[]
United States Patent [[4,135,240
Ritchie [45] Jan, 16, 1979
[54] PROTECTION OF DATA FILE CONTENTS 3,683,418 8/1972 340/172.5
. 3,735,364 5/1973 340/172.5
[75] Inventor: Dennis M. Ritchie, Summit, N.J. 3,742,458 6/1973 340/172.5
[13] Assignee: Bell Telephone Laboratories, 3,761,883 9/1973 AIVALEZ .ocovorvcrrrrrrrorrin 364/200
Incorporated, Murray Hill, N.J. Primary Examiner—James D. Thomas
[21] Appl. No.: 377,591 Attorney, Agens, or Firm—Stephen J. Phillips
[22] Filed: Jul. 9, 1973 [57) ABSTRACT
[51] Imt. CL? .o GOGF 11/10; GOGF 13/00 An improved arrangement for controlling access to
[52] US.CL 364/200 data files by computer users. Access permission bits are
[58] Field of Search 340/172.5; used in the prior art to separately indicate permissions
364/200 MS File, 900 MS File for the file owner and nonowners to read, write and
Ref: execute the file contents. An additional access control
[56] Cited bit is added to each executable file. When this bit is set
U.S. PATENT DOCUMENTS to one, the identification of the current user is changed
Re. 27,239 11/1971 340/172.5 to that of the owner of the executable file. The program
Re. 27,251 12/1971 .. 340/172.5 in the executable file then has access to all data files
3,368,207 2/1968 .. 34071725 owned by the same owner. This change is temporary,
e o " MVUTES i proper deniicaion being restored whe the pro-
3,576,544 4/1971 - 340/172.5 &ram is terminated.
3,599,159 8/1971 340/172.5
3,631,405 12/1971 364/200 4 Claims, 2 Drawing Figures
‘3
MEMORY
STORED DATA 201
A ORED
OWNER RO WR EX msthiETions
NON-OWNERS RD WR
il 5 K
28 [wstRuc {
LOCATION
COUNTER
20| anf 22 23| 24 | 28 &g}gg
o TlefThefufTlofT R
|~
~ B 209 EXES LE
ow'?c"as 27 21 2 n !
EQUAL 221
216~ COMPARATOR 2 %E
— 226 222) | wRITE FILE
1D BIT Acé%
219 Re
DWNER) EXECUTE
220 Y SEQUENCE
224
208- EFFECTIVE
USER ID
205 225
LE&IP 2% | oo
1! 204 SEQUENCE
207 !
ACTUAL 4
USER ID ¢
FILE
COMPUTER ONTROL|

U.S. Patent

FlG. IA

4,135,240

CONTENTS
[

Jan. 16, 1979 Sheet 1 of 2
B 106 '
USER PASSWORD USER ID PROGRAM
BOB LXR2 33 PROLL
TED FRTE 18 PROGI
J!M ST|PA (IS ED‘IT
PASSWORD FILE
16
101 SUID BIT 0 SUID BIT 0
102~ OWNER 1D 18 OWNER 1D 18
~ OWNER OWNER
103 RD_ | WR EX RD WR EX
| | | | | 0
~ NON-OWNERS NON-OWNERS
104 L_RD WR RD WR EX
0 0 0 0 0 0
"PROGI" FILE "AFILE" FILE
a CONTENTS CONTENTS
105 { |
I |
| |
IS 145
SUID BIT 0 SUID BIT 0
OWNER 1D 6 OWNER ID 6
OWNER OWNER
WR EX RD WR
[| | |] 0
NON-OWNERS NON-OWNERS
RD WR EX RD WR
[0 | | | 0
"EDIT"FILE "BFILE" FILE
CONT'ENTS CONTiENTS
|)
I I
125 15—,
SUID BIT | SUID BIT 0
OWNER ID 33 OWNER ID 33
OWNER OWNER
RD WR RD WR
| | | |] 0
NON-OWNERS NON-OWNERS
RD WR EX RD WR | EX
I 0 I 0 0 -0
"PROLL" FILE "CFILE" FILE
CONTENTS

_FILE STORAGE

4,135,240

COMPUTER

U.S. Patent Jan. 16, 1979 Sheet 2 of 2
Fil6. I8
3
MEMORY
! 202 201 :
STORED DATA =& 5
USER ID
OWNER 1D STORED
SUID BIT INSTRUCTIONS
OWNER RD WR EX
NON-OWNERS RD WR EX
206
L.
——— 7 e
218 [sTRUCTION] | Fervsony
Rt e,
ACCESS |
210 21\1; 2I§ ﬁ 213 \ 24| 215 | B e
M m m (
' WR 1“‘) 15" WR{ | 1R} | {EX INSTRUCT ION
OWNER DECODER
—TRo 209 EXECUTE FILE
O\WER ~217 223~) KCCESS
0 REQUEST
EQUAL EJOAL |
» 2y | wp e
| 216~ COMPARATOR AcCESS
OWNER ID
meenlis 2 g s
uiD BIT o REQUEST
[L pxeane
220 224
V' 208 EFFECTIVE
USER ID
205-4% 2257#_
USER 1D ¢ 203) LOGIN
g 204 | SEQUENCE
] l :
207
ACTUAL 4
USER ID I
FILE
CONTROL

-1

4,135,240

1

PROTECTION OF DATA FILE CONTENTS

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to computer systems, and more
particularly, to computer systems having multiple users
and multiple data files.

2. Description of the Prior Art

Computer systems are more efficiently operated
when there are multiple users, and file storage devices
are more efficiently used when many users share stor-
age space on the same physical device. Each user then
has the potential for accessing files belonging to other
users. Free access is not generally permissable since files
may contain programs or data of sensitive nature.

Virtually all computer systems provide means for
protecting sensitive files against access by users legiti-
mately present in the computer system but not autho-
rized to use all files. Hardware or software control
mechanisms are provided to decide at the time of a user
request for file access whether access permission is to be
granted or denied. In general the information necessary
for this decision are (1) file identity (2) user identity and
(3) access purpose.

Computer systems have been designed which include
elaborate lists identifying which users are permitted to
access which files for which purposes. The result is a
complex internal bookeeping task. As users share pro-
grams and data, the lists of permitted functions must be
interchanged. See the article “Dynamic Protection
Structures” by B. W. Lampson, AFIPS Fall Joint Com-
puter Conference, 1969, pp. 27-38. The scheme de-
scribed by Lampson solves the access permission prob-
lem in a general way, but the result is so complex that it
has not found wide acceptance in the computer field.

This improvement is addressed to the simpler
schemes which are in wide use. Each user of the com-
puter system is preassigned an identification number
(user ID). Whenever a user creates a file by reserving
file space for his own use, his user ID is stored along
with the file to identify the file owner (owner ID). In
creating the file, the owner also specifies certain permis-
sions which are to be granted or denied to himself as
owner, and to everyone else as nonowners. Generally,
these permissions are for reading and for writing the
file. This information may be contained in as few as four
binary digits or “permission bits,” a modest addition to
each stored file. Also, in systems having a common
format for files containing programs and files contain-
ing dats, it is usual to have permission information to

20

25

30

35

40

45

50

indicate that the file contents may or may not be loaded -

into the computer and executed as a program. This may
comprise an additional execute permission bit, or an
additional two bits, separate permissions for owners and
nonowners.

The described scheme takes into account file identity
because access control information is stored in associa-
tion with each file individually. User identity is taken
into account in a gross but useful distinction between
owner and nonowner. Access purpose is also a factor
because of the coarse selection between reading, writ-
ing and execution permissions.

A shortcoming with this scheme is its lack of ability
to include fine distinctions of access purpose. Consider,
for example, the problem of accessing a computer time
usage accounting data file. Such a file is used by com-
puter time accounting programs to store elapsed time of

55

65

2

computer usage by the various users of the system. The
accounting programs and the accounting files are
owned by the same user who has permission to read and
write the accounting file to permit regular updates.
Suppose now that it is desired to permit each user to
read from the accounting file the information associated
with that user’s own computer usage. This is certainly a
legitimate access purpose so long as the user does not
attempt to read other accounting information which is
considered private as far as he is concerned.

Under the described scheme there is no simple way to
permit this kind of special purpose data file access. A
general user wishing to read the accounting file cannot
do so directly because he will not have nonowner per-
mission to read. He cannot execute the general account-
ing programs to read for him and return the information
because he will not have nonowner permission to exe-
cute the general accounting programs. Such permis-
sions must generally be denied to nonowners to assure
privacy of the accounting file contents. This problem is
further described in the article “MOO in Multics” by J.
M. Grochow, Software - Practice and Experience, Vol.
2, pp. 303-308 (1972).

SUMMARY OF THE INVENTION

The present invention adds a facility to the basic
protection scheme just described which permits com-
puter users to access a data file for any specific purpose.
This is done by providing for the execution of a com-
puter program to access the file, which program is sup-
plied by the file owner and thus can impose any degree
of control which the file owner wishes to include. This
new facility uses an additional file access control bit for
each stored file of executable program. This additional
bit is termed the “set user identification bit” (SUID bit).

The user ID which is stored by the computer and is
effective to control subsequent file access is changed
whenever a stored file containing an executable pro-
gram (executable file) is loaded into computer memory
for execution and whenever the associated SUID bit is
set to one. The effective user ID is changed from that of
the actual user to that of the owner of the executable
file. During the execution of the program, therefore, the
current user appears to be the owner of the executable
file and all of the data files accessible to the owner of the
executable file are available to the program. The user
may request the program to access those data files, and
the program will operate to satisfy that access request in
the manner it was designed to do, making whatever
tests and restricting access in any manner intended by
the program designer, the actual owner of the execut-
able file and the data files. For the duration of the pro-
gram execution the change in user ID is effective. When
the program is terminated, as for example the attempted
execution of a new program, the user ID of the actual
user is restored.

Under this improved scheme, the problem of ac-
counting file access is easily solved. The computer user
who owns the accounting programs and accounting file
provides a special program for nonaccounting users
which reads the accounting file. This special program
reads the user ID of the actual current user and com-
pares this with the user ID for the accounting file re-
cord sought to be read. If they match, the information
concerns the requesting user and can therefore be re-
turned to him. This special program is stored in a file
which has nonowner permission for execution, and
which has the SUID bit set to one.

4,135,240

3

When the general user executes the special program,
the SUID bit causes the effective user ID to be changed
to the owner ID of the special program, the accounting
user ID. Thus, during the execution of the special pro-
gram, access to the accounting files is allowed by the 5
owner permission bits of the accounting file. Now the
user requests the special program to read the account-
ing file. The special program has the proper permission,
but the action of the special program is determined by
the accounting user who designed the special program.
The special program therefore reads the actual user ID
of the requesting user and only returns to him the ac-
counting information from the accounting file which
relates to himself. The general user can therefore access
the accounting files only for the specific bona fide pur-
pose for which the special program was provided by the
accounting user. After the execution of the special pro-
gram is terminated, the effective user ID is restored to
the user ID of the actual user.

The accounting file access problem is exemplary of 20
the type of problem this new facility alleviates. Other
applications will become apparent from the following
description of one embodiment of the invention.

BRIEF DESCRIPTION OF THE DRAWING

Taken together,
FIGS. 1a and 16 comprise a single Figure showing a
computer system embodying the present invention.

FIG. 1a illustrates a plurality of files stored in a com-
puter storage device, having access control information 30
FIG. 1b illustrates a digital computer and its memory
which operate in conjunction with the files stored in the

previous Figure to embody the present invention.

DETAILED DESCRIPTION

The drawing shows in a single Figure (comprising
FIGS. 1g and 1b together) a computer system compris-
ing computer 1 which accesses file storage 2 by means
of file control 4 and accesses memory 3 by means of 40
memory control 8. Files 10, 11, and 12 contain stored
program information and are read from file storage 2
into memory 3 for execution by computer 1. Files 13,
14, 15 and 16 contain stored data information and are
read from file storage 2 into memory 3 in order that the
stored data contents may be accessed. Computer 1 is
controlled, for the most part, by instructions read from
memory 3 and executed by instruction decoder 6. In-
struction location counter 7 controls the location within
memory 3 of the stored instruction to be next executed
by computer 1.

In computer systems, it is common practice to refer
to files of programs or data by means of arbitrarily
chosen symbolic reference names. In keeping with this
practice files 10 through 16 will hereinafter be referred
to by such symbolic names as they appear in the Figure,
e.g.. PROG1, EDIT, PROLL, AFILE, BFILE,
CFILE and PASSWORD, respectively. For conve-
nience, these names will also be used to denote program
or data contents of the respective files as well as the files 60
themselves. Thus PROG1 will be used to refer to file 10
as it appears in file storage 2 and also to the program
contained in file PROG1 after being read into memory
3 for execution by computer 1.

As will become apparent the program PROG1 regu- 65
larly accesses the data AFILE, the program EDIT
regularly accesses data BFILE and the program
PROLL regularly accesses data CFILE. Each of these

25

35

45

55

4

six files has associated with them various access control
information including: set user identification bit 101
(SUID bit), owner identification number 102 (owner
ID) owner permission bits 103 and nonowner permis-
sion bits 104. This information controls access to stored
file contents 105 in a manner to be described.

Each user of the computer system is identified by a
unique preassigned user identification number 106 (user
ID) which is retained in the PASSWORD file and
which is retrieved when the user begins requesting
computer services. A user may create a new file to
contain data or program by reserving space in file stor-
age 2 for that purpose. The owner ID of the new file is
then set to be equal to the user ID of the creating user.
Thus, the creating user is identified as the owner of the
file. When the new file is thereafter to be accessed, the
owner ID is compared with the user ID of the request-
ing user. If they match, owner permission bits 103 con-
trol file usage; if they do not match, nonowner permis-
sion bits 104 are used. Permission bits 103 and 104 are
set to values prescribed by the owner when the file is
created.

There are three permission bits each for owners and
nonowners labeled RD, WR and EX in the Figure
corresponding to read, write and execute permission,
respectively. When a permission bit is set to 1, the asso-
ciated function is permitted; when set to 0, the function
is denied.

In the Figure read, write and execute permission, are
granted for the respective owners of PROG1, EDIT,
and PROLL. Thus user “TED” with user ID equal to
18 in the PASSWORD file is permitted to read from the
contents of the PROGI file, write into the PROGI file,
and load the contents of the PROG1 file for execution
as a program. Similarly, AFILE, BFILE and CFILE
have permission for reading and writing by their respec-
tive owners. Execution permission is denied to both
owners and nonowners of AFILE, BFILE and CFILE
since these files contain data and now executable pro-
gram instructions.

In the Figure all nonowner permissions are denied for
PROG1 and AFILE. Thus only user “TED”, the
owner of PROG1 and AFILE, may access them. If user
“TED” executes PROG1, and if PROG1 contains ap-
propriate read and write instructions, PROG1 would be
capable of reading and writing AFILE. PROG1 could
therefore represent a program written by user “TED”
for maintaining AFILE as a file of private data.

Nonowners are permitted to read and execute EDIT,

but not write into the EDIT file. EDIT could therefore
represent a program provided by user “JIM” its owner,
for public use but with a restriction upon its alteration
by any user other than its owner. This prevents unau-
thorized changes from being made in the EDIT pro-
gram. Nonowners of BFILE are granted both read and
write permission making it universally available.
BFILE may be a temporary storage file available to any
user.
PROLL has nonowner permission bits similar to
EDIT, making PROLL similarly publicly usable but
privately alterable only by user “BOB,” its owner.
CFILE has no permissions granted for nonowners.

In the Figure, each file has associated with it an addi-
tional file access control bit, the set user identification
bit (SUID bit). When the SUID bit is set to zero for a
given file, the effect of the various permission bits is
exactly that which has been so far described; owners
and nonowners are identified by reference to their user

4,135,240

5

ID as found in the password file, and users who are
nonowners of a given file are subject to a set of permis-
sion bits which are distinct from users who are owners.
Thus user “TED,” user ID 18, may execute PROG1
(owner permission). PROG1 may then access AFILE
for reading and writing (owner permissions). User
“TED” may also call for the execution of EDIT (no-
nowner permission) and EDIT may then access AFILE
for reading and writing since the current user of EDIT
is also the owner of AFILE (owner permissions). EDIT
could not access CFILE under these circumstances
since user “TED” does not have nonowner permissions.

When the SUID bit is set to one for a given execut-
able file, the effective user ID is temporarily altered to
be the owner ID of the executable file during the period
of its execution. Access to any files owned by the owner
of the executable file is therefore controlled by owner
permissions. In the Figure, user “TED” may execute
PROLL (nonowner permission). PROLL has the SUID
bit set to one, so that during the execution of PROLL
the effective user ID of user “TED” is changed from 18
to the owner ID of PROLL which is 33. User “TED”
thus has access to CFILE for reading and writing
(owner permissions) during the execution of PROLL.
After PROLL is terminated, the effective user ID of
user “TED” reverts to the proper value of 18. Thus
PROLL may represent a program provided by user
“BOB”, the owner of PROLL and CFILE, for the
specific purpose of accessing CFILE on behalf of no-
nowners. The manipulations on CFILE performed by
PROLL is under the control of user “BOB”, the owner
and presumably the designer of PROLL, so that no-
nowners can only access CFILE through PROLL for
the bona fide purposes and in the manner which
PROLL is designed to permit.

The SUID bit only has meaning when the file associ-
ated with it is loaded for execution as a computer pro-
gram. For files containing only data and not executable
program instructions, the SUID bit has no effect. In the
Figure, the SUID bit is shown set to zero for data files
AFILE, BFILE, and CFILE.

So far this Detailed Description has described the file
access control information associated with each stored
file, and the function of each piece of information in
regulating access to the associated file. It remains now
to complete this Detailed Description by illustrating an
implementation giving concrete form to this functional
description. To those skilled in the computer art it is
obvious that such an implementation can be expressed
either in terms of a computer program (software) imple-
mentation or a computer circuitry (hardware) imple-
mentation, the two being functional equivalents of one
another. It will be understood that a functionally equiv-
alent software embodiment is within the scope of the
inventive contribution herein described. For some pur-
poses a software embodiment may likely be preferrable
in practice. When the construction of one such embodi-
ment is given the other is well within the level of ordi-
nary skill of those versed in digital computer tech-
niques.

The circuitry shown in the Figure controls file access
in the following manner. Computer 1 operates under
control of program instructions stored in memory area
201. Instruction location counter 7 addresses each in-
struction to be executed. When the executing program
calls for access to a stored file, the file access control
information of the stored file, such as that shown at 101
through 104 for file PROG1 is read into memory area

20

25

30

35

45

50

55

65

6
202. The access control information is conveyed over
cable 206 to various circuits of computer 1. Similarly,
the contents of the PASSWORD file are read into
memory area 202 and the user ID information stored
therein also conveyed over cable 206.

Access to a given file is controlled by comparator
216, gate circuits 210 through 215 and gate circuit 218.
The owner ID of the file to be accessed is conveyed to
comparator 216 by cable 206. The effective user ID is
conveyed from register 208 to comparator 216 by cable
226. In the event the owner ID and effective user ID are
equal, comparator 216 provides an output on lead 217 to
gate circuits 210, 211, and 212. In the event the owner
ID and effective user ID are unequal, an output is pro-
vided on lead 223 to gate circuits 213, 214, and 215.
When the instruction being executed by computer 1
requests file access for execution, instruction decoder 6
provides an output on lead 209 which is conveyed to
gate circuits 212 and 215. When a read access request is
made, an output is provided on lead 221 which is con-
veyed to gate circuits 211 and 214. When a write access
request is made, an output is provided on lead 222
which is conveyed to gate circuits 210 and 213.

When permission bits of the file to be accessed are set
to one, signals are provided over cable 206. Owner
permissions to write, read and execute are conveyed to
gate circuits 210, 211 and 212, respectively. Nonowner
permissions to write, read and execute are conveyed to
gate circuits 213, 214 and 215, respectively. When any
of the respective permission bits are set to one, the
corresponding gate circuits 210 through 215 are pre-
vented from producing an output. When any of the
respective permission bits are set to zero, the corre-
sponding gate circuits 210 through 215 are enabled for
operating on the coincidence of signals from the corre-
sponding inputs from comparator 216 and instruction
decoder 6.

When any one or more of the gate circuits 210
through 215 produces an output, gate circuit 218 pro-
duces an output which is conveyed to instruction loca-
tion counter 7 to deny the access permission requested
by instruction decoder 6. An output from gate circuit
218 causes instruction location counter 7 to alter the
normal sequence of program execution by computer 1.
Instead of continuing with the program sequence which
completes the process of accessing the file for reading,
writing or execution, computer 1 begins executing a
sequence which notifies the requesting program that
access is denied. In the absence of a signal from gate
circuit 218 instruction location counter 7 proceeds in
the normal manner causing computer 1 to continue to
the next instruction in the program sequence to access
the file as requested.

As each computer user begins requesting computer
services, the program first executed on his behalf is the
program whose name appears in the PASSWORD file
under the entry for that user. The process of beginning
operation with the computer is termed “logging in”, a
term which reflects the entry of the new user into vari-
ous internal tables. The sequence of program instruc-
tions which enters new users into the main stream of
computer activities is termed the LOGIN sequence.

Once having logged into the computer, the user may
call for the execution of any other program stored in the
files by invoking a program sequence for accessing the
file, reading it in, and beginning its execution. This is
termed the EXECUTE sequence. Access to an execut-

4,135,240

7

able program file is controlled by the associated owner
and nonowner permission bits.

During the LOGIN sequence, the contents of the
PASSWORD file is read into memory area 202. The
user is required to input to the computer his user name
and his private password. The appropriate user entry is
located in the PASSWORD file and the password
checked to verify the authenticity of the user service
request. If the user is bona fide, instruction decoder 6
transmits a control pulse in response to the LOGIN
sequence over lead 203 to gating circuits 204 and 205.
Thus user ID of the new user, conveyed from memory
3 via cable 206, is gated into registers 207 and 208 where
it is stored. Register 207 contains the actual user ID of
the current system user as obtained from the PASS-
WORD file. Register 208 contains the user ID which
will be effective to control file access. The contents of
register 208 may be changed at times other than during
LOGIN.

The LOGIN sequence of instructions also obtains
from the PASSWORD file the identity of the program
to be executed on behalf of the new user. The LOGIN
sequence terminates by calling for the EXECUTE se-
quence to begin execution of the named program.

During the EXECUTE sequence, instruction de-
coder 6 transmits a control pulse over lead 224 to gate
circuit 225. The contents of register 207 is thereby gated
into register 208. This resets the effective user ID to the
value of the current actual user ID cancelling the effect
of any temporary alteration in the contents of register
208 made by the previously executing program.

The EXECUTE sequence next calls for access to the
named stored file for execution causing the appropriate
file access control information to be read into memory
area 202 and causing the appropriate owner or no-
nowner execution permission to be checked as previ-
ously described.

In response to the EXECUTE sequence, instruction
decoder 6 next transmits a pulse over lead 219 to gate
circuit 220. The SUID bit for the file to be executed is
conveyed over cable 206 to gate circuit 220. If the
SUID bit is zero for the file to be executed, gating cir-
cuit 220 is not enabled and the effective user ID stored
in register 208 remains equal to the value of the actual
user ID. If the SUID bit of the file to be executed is set
to one, the coincidence of the SUID bit and the pulse on
lead 219 enables gate circuit 220 to gate into register 208
the owner ID of the file to be executed. The owner ID
is conveyed to gate circuit 220 over cable 206. The
effective user ID stored in register 208 is thus set equal
to the owner ID of the file to be executed when the
SUID bit of the file to be executed is set to one.

The EXECUTE sequence terminates by reading the
file contents of the file to be executed into memory area
201 and then transferring control to those instructions.

Any program in execution on computer 1 may call
for read or write access to files in storage. When this
occurs, the appropriate read or write permission bits are
checked as above described. Either the owner or no-
nowner permission bits will be checked according to
the owner ID of the file to be accessed and the effective
user ID of the program in execution as stored in register
208. If the program in execution has the SUID bit of its
file access control information set to one, the effective
user ID is the same as the owner ID of the file contain-
ing the program in execution. In this case, access to any
file having this same owner ID will be controlled by the
owner permission bits. If the program in execution has

15

20

25

30

35

40

45

50

60

65

8
the SUID bit of its file access control information set to
zero, the effective user ID is the user ID of the actual
user, and file access will be controlled by the owner or
nonowner permission bits, depending on the owner ID
of the file to be accessed.
Any program in execution on computer 1 may call
for the execution of executable program files in storage.
When this occurs, the effective user ID stored in regis-
ter 208 is reset to the value of the actual user ID. Access
to the executable file is controlled by the owner or
nonowner permission bits, depending on the owner ID
of the executable file to be accessed.
Details of circuit construction for the various circuit
elements illustrated may be found in Chapter 9 of Pulse,
Digital, and Switching Waveforms by Millman and Taub,
McGraw-Hill, 1965, a standard text on the subject.
What is claimed is:
1. In a computer system serving at least one external
current user and having stored at least one file of exe-
cutable program instructions owned by a file owner
different from said current user,
means for storing access control information in asso-
ciation with said file, including identification of
said file owner and a control indicator having se-
lectively either a first or a second binary state,

means for sensing said first state of said control indi-
cator, and

means responsive to said first state of said control

indicator for changing temporarily the identifica-
tion of said current user of the computer system to
that of said file owner during the execution of said
program instructions,

whereby said current user selectively may be given

access by said computer system to files owned by
said file owner during the execution of said pro-
gram instructions.

2. A computer system including file storage and
memory for serving a multiplicity of external users,
each user having a unique identification comprising:

at least one file stored in said file storage containing

program instructions and having associated there-
with the identification of the owner of said file and
a control signal having selectively either a first or a
second binary state;

means for storing the identification of the current

user of said computer system;

means for loading program instructions from said file

into said memory for execution by said computer
on behalf of said current user;

means for detecting said first state of said control

signal associated with said file;
means responsive to said means for detecting for
changing the identification of the current user to
the identification of said owner of said file; and

means for restoring the identification of the current
user at the end of the execution of said program
instructions;

whereby the current user selectively may be given

access by said computer system to files owned by
said owner of said file during the execution of said
program instructions.

3. A computer system having a multiplicity of stored
files, each said file having associated a file owner identi-
fication, means for storing the identification of the ex-
ternal current user of the computer system, and means
for accessing a data file including means for comparing
the owner identification of said data file with the cur-
rent user identification, for denying access if said identi-

4,135,240

9 10
fications do not match, and for permitting access if said stored file in response to said first state of said
identifications do match, comprising: control indicator,
at least a first stored file of executable program in- whereby said means for accessing selectively permits
structions and at least a second stored file of data, access to said second file of stored data during the
said first file having associated therewith a control § execution of said program instructions.
indicator having selectively either a first or a sec- 4. A computer system as set forth in claim 3 further
ond binary state, and said first and second files comprising means for storing the user identification of
having the same file owner identification, the actual current user of the computer system,;
means for loading the program instructions from said and, means responsive to said means for storing for
first stored file for execution by the computer sys- 10 changing back the identification of the current user
tem and for sensing said first state of said control from that of the owner of the first stored file to that
indicator, and of the actual current user after the execution of said
means for changing temporarily the identification of program instructions.
* & 2 3 »

the current user to that of the owner of said first
15

25

35

45

50

55

65

