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  ______________________________________________________________________ 
 
  1.  Introduction 
 
  This HOWTO document describes programming hardware I/O ports and 
  waiting for small periods of time in user-mode Linux programs running 
  on the Intel x86 architecture. This document is a descendant of the 
  very small IO-Port mini-HOWTO by the same author. 
 
  This document is Copyright 1995-2000 Riku Saikkonen. See the Linux 
  HOWTO copyright 
  <http://sunsite.unc.edu/pub/Linux/docs/HOWTO/COPYRIGHT> for details. 
 
  If you have corrections or something to add, feel free to e-mail me 
  (Riku.Saikkonen@hut.fi)... 
 
  2.  Using I/O ports in C programs 
 
  2.1.  The normal method 
 
  Routines for accessing I/O ports are in /usr/include/asm/io.h (or 



  linux/include/asm-i386/io.h in the kernel source distribution). The 
  routines there are inline macros, so it is enough to #include 
  <asm/io.h>; you do not need any additional libraries. 
 
  Because of a limitation in gcc (present in all versions I know of, 
  including egcs), you have to compile any source code that uses these 
  routines with optimisation turned on (gcc -O1 or higher), or 
  alternatively use #define extern static before you #include <asm/io.h> 
  (remember to #undef externafterwards). 
 
  For debugging, you can use gcc -g -O (at least with modern versions of 
  gcc), though optimisation can sometimes make the debugger behave a bit 
  strangely. If this bothers you, put the routines that use I/O port 
  access in a separate source file and compile only that with 
  optimisation turned on. 
 
 
  2.1.1.  Permissions 
 
  Before you access any ports, you must give your program permission to 
  do so. This is done by calling the ioperm() function (declared in 
  unistd.h, and defined in the kernel) somewhere near the start of your 
  program (before any I/O port accesses). The syntax is ioperm(from, 
  num, turn_on), where from is the first port number to give access to, 
  and num the number of consecutive ports to give access to. For 
  example, ioperm(0x300, 5, 1) would give access to ports 0x300 through 
  0x304 (a total of 5 ports). The last argument is a Boolean value 
  specifying whether to give access to the program to the ports (true 
  (1)) or to remove access (false (0)). You can call ioperm() multiple 
  times to enable multiple non-consecutive ports. See the ioperm(2) 
  manual page for details on the syntax. 
 
  The ioperm() call requires your program to have root privileges; thus 
  you need to either run it as the root user, or make it setuid root. 
  You can drop the root privileges after you have called ioperm() to 
  enable the ports you want to use. You are not required to explicitly 
  drop your port access privileges with ioperm(..., 0) at the end of 
  your program; this is done automatically as the process exits. 
 
  A setuid() to a non-root user does not disable the port access granted 
  by ioperm(), but a fork() does (the child process does not get access, 
  but the parent retains it). 
 
  ioperm() can only give access to ports 0x000 through 0x3ff; for higher 
  ports, you need to use iopl() (which gives you access to all ports at 
  once). Use the level argument 3 (i.e., iopl(3)) to give your program 
  access to all I/O ports (so be careful --- accessing the wrong ports 
  can do all sorts of nasty things to your computer). Again, you need 
  root privileges to call iopl(). See the iopl(2) manual page for 
  details. 
 
 
  2.1.2.  Accessing the ports 
 
 
  To input a byte (8 bits) from a port, call inb(port), it returns the 
  byte it got. To output a byte, call outb(value, port) (please note the 
  order of the parameters). To input a word (16 bits) from ports x and 
  x+1 (one byte from each to form the word, using the assembler 
  instruction inw), call inw(x). To output a word to the two ports, use 
  outw(value, x). If you're unsure of which port instructions (byte or 
  word) to use, you probably want inb() and outb() --- most devices are 
  designed for bytewise port access. Note that all port access 



  instructions take at least about a microsecond to execute. 
 
  The inb_p(), outb_p(), inw_p(), and outw_p() macros work otherwise 
  identically to the ones above, but they do an additional short (about 
  one microsecond) delay after the port access; you can make the delay 
  about four microseconds with #define REALLY_SLOW_IO before you 
  #include <asm/io.h>. These macros normally (unless you #define 
  SLOW_IO_BY_JUMPING, which is probably less accurate) use a port output 
  to port 0x80 for their delay, so you need to give access to port 0x80 
  with ioperm() first (outputs to port 0x80 should not affect any part 
  of the system). For more versatile methods of delaying, read on. 
 
  There are manual pages for ioperm(2), iopl(2), and the above macros in 
  reasonably recent releases of the Linux manual page collection. 
 
 
 
  2.2.  An alternate method: /dev/port 
 
  Another way to access I/O ports is to open() /dev/port (a character 
  device, major number 1, minor 4) for reading and/or writing (the stdio 
  f*() functions have internal buffering, so avoid them). Then lseek() 
  to the appropriate byte in the file (file position 0 = port 0x00, file 
  position 1 = port 0x01, and so on), and read() or write() a byte or 
  word from or to it. 
 
  Naturally, for this to work your program needs read/write access to 
  /dev/port. This method is probably slower than the normal method 
  above, but does not need compiler optimisation nor ioperm(). It 
  doesn't need root access either, if you give a non-root user or group 
  access to /dev/port --- but this is a very bad thing to do in terms of 
  system security, since it is possible to hurt the system, perhaps even 
  gain root access, by using /dev/port to access hard disks, network 
  cards, etc. directly. 
 
  You cannot use select(2) or poll(2) to read /dev/port, because the 
  hardware does not have a facility for notifying the CPU when a value 
  in an input port changes. 
 
 
 
  3.  Interrupts (IRQs) and DMA access 
 
  You cannot use IRQs or DMA directly from a user-mode process. You need 
  to write a kernel driver; see The Linux Kernel Hacker's Guide 
  <http://www.redhat.com:8080/HyperNews/get/khg.html> for details and 
  the kernel source code for examples. 
 
  You can disable interrupts from within a user-mode program, though it 
  can be dangerous (even kernel drivers do it for as short a time as 
  possible).  After calling iopl(3), you can disable interrupts simply 
  by calling asm("cli");, and re-enable them with asm("sti");. 
 
 
 
  4.  High-resolution timing 
 
  4.1.  Delays 
 
  First of all, I should say that you cannot guarantee user-mode 
  processes to have exact control of timing because of the multi-tasking 
  nature of Linux. Your process might be scheduled out at any time for 
  anything from about 10 milliseconds to a few seconds (on a system with 



  very high load). However, for most applications using I/O ports, this 
  does not really matter. To minimise this, you may want to nice your 
  process to a high-priority value (see the nice(2) manual page) or use 
  real-time scheduling (see below). 
 
  If you want more precise timing than normal user-mode processes give 
  you, there are some provisions for user-mode `real time' support. 
  Linux 2.x kernels have soft real time support; see the manual page for 
  sched_setscheduler(2) for details. There is a special kernel that 
  supports hard real time; see  <http://luz.cs.nmt.edu/~rtlinux/> for 
  more information on this. 
 
 
  4.1.1.  Sleeping: sleep()  and usleep() 
 
  Now, let me start with the easier timing calls. For delays of multiple 
  seconds, your best bet is probably to use sleep(). For delays of at 
  least tens of milliseconds (about 10 ms seems to be the minimum 
  delay), usleep() should work. These functions give the CPU to other 
  processes (``sleep''), so CPU time isn't wasted. See the manual pages 
  sleep(3) and usleep(3) for details. 
 
  For delays of under about 50 milliseconds (depending on the speed of 
  your processor and machine, and the system load), giving up the CPU 
  takes too much time, because the Linux scheduler (for the x86 
  architecture) usually takes at least about 10-30 milliseconds before 
  it returns control to your process. Due to this, in small delays, 
  usleep(3) usually delays somewhat more than the amount that you 
  specify in the parameters, and at least about 10 ms. 
 
 
  4.1.2.  nanosleep() 
 
  In the 2.0.x series of Linux kernels, there is a new system call, 
  nanosleep() (see the nanosleep(2) manual page), that allows you to 
  sleep or delay for short times (a few microseconds or more). 
 
  For delays <= 2 ms, if (and only if) your process is set to soft real 
  time scheduling (using sched_setscheduler()), nanosleep() uses a busy 
  loop; otherwise it sleeps, just like usleep(). 
 
  The busy loop uses udelay() (an internal kernel function used by many 
  kernel drivers), and the length of the loop is calculated using the 
  BogoMips value (the speed of this kind of busy loop is one of the 
  things that BogoMips measures accurately). See 
  /usr/include/asm/delay.h) for details on how it works. 
 
 
  4.1.3.  Delaying with port I/O 
 
  Another way of delaying small numbers of microseconds is port I/O. 
  Inputting or outputting any byte from/to port 0x80 (see above for how 
  to do it) should wait for almost exactly 1 microsecond independent of 
  your processor type and speed. You can do this multiple times to wait 
  a few microseconds. The port output should have no harmful side 
  effects on any standard machine (and some kernel drivers use it). This 
  is how {in|out}[bw]_p() normally do the delay (see asm/io.h). 
 
  Actually, a port I/O instruction on most ports in the 0-0x3ff range 
  takes almost exactly 1 microsecond, so if you're, for example, using 
  the parallel port directly, just do additional inb()s from that port 
  to delay. 
 



 
 
  4.1.4.  Delaying with assembler instructions 
 
  If you know the processor type and clock speed of the machine the 
  program will be running on, you can hard-code shorter delays by 
  running certain assembler instructions (but remember, your process 
  might be scheduled out at any time, so the delays might well be longer 
  every now and then). For the table below, the internal processor speed 
  determines the number of clock cycles taken; e.g., for a 50 MHz 
  processor (e.g. 486DX-50 or 486DX2-50), one clock cycle takes 
  1/50000000 seconds (=200 nanoseconds). 
 
 
 
       Instruction   i386 clock cycles   i486 clock cycles 
       xchg %bx,%bx          3                   3 
       nop                   3                   1 
       or %ax,%ax            2                   1 
       mov %ax,%ax           2                   1 
       add %ax,0             2                   1 
 
 
 
  Clock cycles for Pentiums should be the same as for i486, except that 
  on Pentium Pro/II, add %ax, 0 may take only 1/2 clock cycles. It can 
  sometimes be paired with another instruction (because of out-of-order 
  execution, this need not even be the very next instruction in the 
  instruction stream). 
 
  The instructions nop and xchg in the table should have no side 
  effects. The rest may modify the flags register, but this shouldn't 
  matter since gcc should detect it. xchg %bx, %bx is a safe choice for 
  a delay instruction. 
 
  To use these, call asm("instruction") in your program. The syntax of 
  the instructions is as in the table above; if you want multiple 
  instructions in a single asm() statement, separate them with 
  semicolons. For example, asm("nop ; nop ; nop ; nop") executes four 
  nop instructions, delaying for four clock cycles on i486 or Pentium 
  processors (or 12 clock cycles on an i386). 
 
  asm() is translated into inline assembler code by gcc, so there is no 
  function call overhead. 
 
  Shorter delays than one clock cycle are impossible in the Intel x86 
  architecture. 
 
 
  4.1.5.  rdtsc  for Pentiums 
 
  For Pentiums, you can get the number of clock cycles elapsed since the 
  last reboot with the following C code (which executes the CPU 
  instrution named RDTSC): 
 
 
 
       ______________________________________________________________________ 
          extern __inline__ unsigned long long int rdtsc() 
          { 
            unsigned long long int x; 
            __asm__ volatile (".byte 0x0f, 0x31" : "=A" (x)); 
            return x; 



          } 
       ______________________________________________________________________ 
 
  You can poll this value in a busy loop to delay for as many clock 
  cycles as you want. 
 
 
 
  4.2.  Measuring time 
 
  For times accurate to one second, it is probably easiest to use 
  time(). For more accurate times, gettimeofday() is accurate to about a 
  microsecond (but see above about scheduling). For Pentiums, the rdtsc 
  code fragment above is accurate to one clock cycle. 
 
  If you want your process to get a signal after some amount of time, 
  use setitimer() or alarm(). See the manual pages of the functions for 
  details. 
 
 
 
  5.  Other programming languages 
 
  The description above concentrates on the C programming language. It 
  should apply directly to C++ and Objective C. In assembler, you have 
  to call ioperm() or iopl() as in C, but after that you can use the I/O 
  port read/write instructions directly. 
 
  In other languages, unless you can insert inline assembler or C code 
  into the program or use the system calls mentioned above, it is 
  probably easiest to write a simple C source file with functions for 
  the I/O port accesses or delays that you need, and compile and link it 
  in with the rest of your program. Or use /dev/port as described above. 
 
 
 
  6.  Some useful ports 
 
  Here is some programming information for common ports that can be 
  directly used for general-purpose TTL (or CMOS) logic I/O. 
 
  If you want to use these or other common ports for their intended 
  purpose (e.g., to control a normal printer or modem), you should most 
  likely use existing drivers (which are usually included in the kernel) 
  instead of programming the ports directly as this HOWTO describes. 
  This section is intended for those people who want to connect LCD 
  displays, stepper motors, or other custom electronics to a PC's 
  standard ports. 
 
  If you want to control a mass-market device like a scanner (that has 
  been on the market for a while), look for an existing Linux driver for 
  it. The Hardware-HOWTO 
  <http://sunsite.unc.edu/pub/Linux/docs/HOWTO/Hardware-HOWTO> is a good 
  place to start. 
 
  <http://www.hut.fi/Misc/Electronics/> is a good source for more 
  information on connecting devices to computers (and on electronics in 
  general). 
 
 
 
  6.1.  The parallel port 
 



  The parallel port's base address (called ``BASE'' below) is 0x3bc for 
  /dev/lp0, 0x378 for /dev/lp1, and 0x278 for /dev/lp2. If you only want 
  to control something that acts like a normal printer, see the 
  Printing-HOWTO <http://sunsite.unc.edu/pub/Linux/docs/HOWTO/Printing- 
  HOWTO>. 
 
  In addition to the standard output-only mode described below, there is 
  an `extended' bidirectional mode in most parallel ports. For 
  information on this and the newer ECP/EPP modes (and the IEEE 1284 
  standard in general), see  <http://www.fapo.com/> and 
  <http://www.senet.com.au/~cpeacock/parallel.htm>. Remember that since 
  you cannot use IRQs or DMA in a user-mode program, you will probably 
  have to write a kernel driver to use ECP/EPP; I think someone is 
  writing such a driver, but I don't know the details. 
 
  The port BASE+0 (Data port) controls the data signals of the port (D0 
  to D7 for bits 0 to 7, respectively; states: 0 = low (0 V), 1 = high 
  (5 V)). A write to this port latches the data on the pins. A read 
  returns the data last written in standard or extended write mode, or 
  the data in the pins from another device in extended read mode. 
 
  The port BASE+1 (Status port) is read-only, and returns the state of 
  the following input signals: 
 
  ·  Bits 0 and 1 are reserved. 
 
  ·  Bit 2 IRQ status (not a pin, I don't know how this works) 
 
  ·  Bit 3 ERROR (1=high) 
 
  ·  Bit 4 SLCT (1=high) 
 
  ·  Bit 5 PE (1=high) 
 
  ·  Bit 6 ACK (1=high) 
 
  ·  Bit 7 -BUSY (0=high) 
 
  The port BASE+2 (Control port) is write-only (a read returns the data 
  last written), and controls the following status signals: 
 
  ·  Bit 0 -STROBE (0=high) 
 
  ·  Bit 1 -AUTO_FD_XT (0=high) 
 
  ·  Bit 2 INIT (1=high) 
 
  ·  Bit 3 -SLCT_IN (0=high) 
 
  ·  Bit 4 enables the parallel port IRQ (which occurs on the low-to- 
     high transition of ACK) when set to 1. 
 
  ·  Bit 5 controls the extended mode direction (0 = write, 1 = read), 
     and is completely write-only (a read returns nothing useful for 
     this bit). 
 
  ·  Bits 6 and 7 are reserved. 
 
  Pinout (a 25-pin female D-shell connector on the port) (i=input, 
  o=output): 
 
 
       1io -STROBE, 2io D0, 3io D1, 4io D2, 5io D3, 6io D4, 7io D5, 8io D6, 



       9io D7, 10i ACK, 11i -BUSY, 12i PE, 13i SLCT, 14o -AUTO_FD_XT, 
       15i ERROR, 16o INIT, 17o -SLCT_IN, 18-25 Ground 
 
 
 
  The IBM specifications say that pins 1, 14, 16, and 17 (the control 
  outputs) have open collector drivers pulled to 5 V through 4.7 kiloohm 
  resistors (sink 20 mA, source 0.55 mA, high-level output 5.0 V minus 
  pullup). The rest of the pins sink 24 mA, source 15 mA, and their 
  high-level output is min. 2.4 V. The low state for both is max. 0.5 V. 
  Non-IBM parallel ports probably deviate from this standard. For more 
  information on this, see 
  <http://www.hut.fi/Misc/Electronics/circuits/lptpower.html>. 
 
  Finally, a warning: Be careful with grounding. I've broken several 
  parallel ports by connecting to them while the computer is turned on. 
  It might be a good thing to use a parallel port not integrated on the 
  motherboard for things like this. (You can usually get a second 
  parallel port for your machine with a cheap standard `multi-I/O' card; 
  just disable the ports that you don't need, and set the parallel port 
  I/O address on the card to a free address. You don't need to care 
  about the parallel port IRQ if you don't use it.) 
 
 
 
  6.2.  The game (joystick) port 
 
  The game port is located at port addresses 0x200-0x207. If you want to 
  control normal joysticks, you're probably better off using the drivers 
  distributed with the Linux kernel. 
 
  Pinout (a 15-pin female D-shell connector on the port): 
 
  ·  1,8,9,15: +5 V (power) 
 
  ·  4,5,12: Ground 
 
  ·  2,7,10,14: Digital inputs BA1, BA2, BB1, and BB2, respectively 
 
  ·  3,6,11,13: ``Analog'' inputs AX, AY, BX, and BY, respectively 
 
  The +5 V pins seem to often be connected directly to the power lines 
  in the motherboard, so they may be able to source quite a lot of 
  power, depending on the motherboard, power supply and game port. 
 
  The digital inputs are used for the buttons of the two joysticks 
  (joystick A and joystick B, with two buttons each) that you can 
  connect to the port. They should be normal TTL-level inputs, and you 
  can read their status directly from the status port (see below). A 
  real joystick returns a low (0 V) status when the button is pressed 
  and a high (the 5 V from the power pins through an 1 Kohm resistor) 
  status otherwise. 
 
  The so-called analog inputs actually measure resistance. The game port 
  has a quad one-shot multivibrator (a 558 chip) connected to the four 
  inputs. In each input, there is a 2.2 Kohm resistor between the input 
  pin and the multivibrator output, and a 0.01 uF timing capacitor 
  between the multivibrator output and the ground. A real joystick has a 
  potentiometer for each axis (X and Y), wired between +5 V and the 
  appropriate input pin (AX or AY for joystick A, or BX or BY for 
  joystick B). 
 
  The multivibrator, when activated, sets its output lines high (5 V) 



  and waits for each timing capacitor to reach 3.3 V before lowering the 
  respective output line. Thus the high period duration of the 
  multivibrator is proportional to the resistance of the potentiometer 
  in the joystick (i.e., the position of the joystick in the appropriate 
  axis), as follows: 
 
       R = (t - 24.2) / 0.011, 
 
 
  where R is the resistance (ohms) of the potentiometer and t the high 
  period duration (microseconds). 
  Thus, to read the analog inputs, you first activate the multivibrator 
  (with a port write; see below), then poll the state of the four axes 
  (with repeated port reads) until they drop from high to low state, 
  measuring their high period duration. This polling uses quite a lot of 
  CPU time, and on a non-realtime multitasking system like (normal user- 
  mode) Linux, the result is not very accurate because you cannot poll 
  the port constantly (unless you use a kernel-level driver and disable 
  interrupts while polling, but this wastes even more CPU time). If you 
  know that the signal is going to take a long time (tens of ms) to go 
  down, you can call usleep() before polling to give CPU time to other 
  processes. 
 
  The only I/O port you need to access is port 0x201 (the other ports 
  either behave identically or do nothing). Any write to this port (it 
  doesn't matter what you write) activates the multivibrator. A read 
  from this port returns the state of the input signals: 
 
  ·  Bit 0: AX (status (1=high) of the multivibrator output) 
 
  ·  Bit 1: AY (status (1=high) of the multivibrator output) 
 
  ·  Bit 2: BX (status (1=high) of the multivibrator output) 
 
  ·  Bit 3: BY (status (1=high) of the multivibrator output) 
 
  ·  Bit 4: BA1 (digital input, 1=high) 
 
  ·  Bit 5: BA2 (digital input, 1=high) 
 
  ·  Bit 6: BB1 (digital input, 1=high) 
 
  ·  Bit 7: BB2 (digital input, 1=high) 
 
 
 
  6.3.  The serial port 
 
  If the device you're talking to supports something resembling RS-232, 
  you should be able to use the serial port to talk to it. The Linux 
  serial driver should be enough for almost all applications (you 
  shouldn't have to program the serial port directly, and you'd probably 
  have to write a kernel driver to do it); it is quite versatile, so 
  using non-standard bps rates and so on shouldn't be a problem. 
 
  See the termios(3) manual page, the serial driver source code 
  (linux/drivers/char/serial.c), and 
  <http://www.easysw.com/~mike/serial/> for more information on 
  programming serial ports on Unix systems. 
 
 
 
   



  7.  Hints 
 
  If you want good analog I/O, you can wire up ADC and/or DAC chips to 
  the parallel port (hint: for power, use the game port connector or a 
  spare disk drive power connector wired to outside the computer case, 
  unless you have a low-power device and can use the parallel port 
  itself for power, or use an external power supply), or buy an AD/DA 
  card (most of the older/slower ones are controlled by I/O ports). Or, 
  if you're satisfied with 1 or 2 channels, inaccuracy, and (probably) 
  bad zeroing, a cheap sound card supported by the Linux sound driver 
  should do (and it's quite fast). 
 
  With accurate analog devices, improper grounding may generate errors 
  in the analog inputs or outputs. If you experience something like 
  this, you could try electrically isolating your device from the 
  computer with optocouplers (on all signals between the computer and 
  your device). Try to get power for the optocouplers from the computer 
  (spare signals on the port may give enough power) to achieve better 
  isolation. 
 
  If you're looking for printed circuit board design software for Linux, 
  there is a free X11 application called Pcb that should do a nice job, 
  at least if you aren't doing anything very complex. It is included in 
  many Linux distributions, and available in 
  <ftp://sunsite.unc.edu/pub/Linux/apps/circuits/> (filename pcb-*). 
 
 
 
  8.  Troubleshooting 
 
 
     Q1. 
        I get segmentation faults when accessing ports. 
 
 
     A1. 
        Either your program does not have root privileges, or the 
        ioperm() call failed for some other reason. Check the return 
        value of ioperm(). Also, check that you're actually accessing 
        the ports that you enabled with ioperm() (see Q3). If you're 
        using the delaying macros (inb_p(), outb_p(), and so on), 
        remember to call ioperm() to get access to port 0x80 too. 
 
 
     Q2. 
        I can't find the in*(), out*() functions defined anywhere, and 
        gcc complains about undefined references. 
 
 
     A2. 
        You did not compile with optimisation turned on (-O), and thus 
        gcc could not resolve the macros in asm/io.h. Or you did not 
        #include <asm/io.h> at all. 
 
 
     Q3. 
        out*() doesn't do anything, or does something weird. 
 
 
     A3. 
        Check the order of the parameters; it should be outb(value, 
        port), not outportb(port, value) as is common in MS-DOS. 
 



 
     Q4. 
        I want to control a standard RS-232 device/parallel 
        printer/joystick... 
 
 
     A4. 
        You're probably better off using existing drivers (in the Linux 
        kernel or an X server or somewhere else) to do it. The drivers 
        are usually quite versatile, so even slightly non-standard 
        devices usually work with them. See the information on standard 
        ports above for pointers to documentation for them. 
 
 
 
  9.  Example code 
 
  Here's a piece of simple example code for I/O port access: 
 
 
 
       ______________________________________________________________________ 
       /* 
        * example.c: very simple example of port I/O 
        * 
        * This code does nothing useful, just a port write, a pause, 
        * and a port read. Compile with `gcc -O2 -o example example.c', 
        * and run as root with `./example'. 
        */ 
 
       #include <stdio.h> 
       #include <unistd.h> 
       #include <asm/io.h> 
 
       #define BASEPORT 0x378 /* lp1 */ 
 
       int main() 
       { 
         /* Get access to the ports */ 
         if (ioperm(BASEPORT, 3, 1)) {perror("ioperm"); exit(1);} 
 
         /* Set the data signals (D0-7) of the port to all low (0) */ 
         outb(0, BASEPORT); 
 
         /* Sleep for a while (100 ms) */ 
         usleep(100000); 
 
         /* Read from the status port (BASE+1) and display the result */ 
         printf("status: %d\n", inb(BASEPORT + 1)); 
 
         /* We don't need the ports anymore */ 
         if (ioperm(BASEPORT, 3, 0)) {perror("ioperm"); exit(1);} 
 
         exit(0); 
       } 
 
       /* end of example.c */ 
       ______________________________________________________________________ 
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