
Table of Contents

 1. Introduction

 2. Using I/O ports in C programs

 2.1 The normal method
 2.1.1 Permissions
 2.1.2 Accessing the ports
 2.2 An alternate method:

 3. Interrupts (IRQs) and DMA access

 4. High-resolution timing

 4.1 Delays
 4.1.1 Sleeping:
 4.1.2 (TT
 4.1.3 Delaying with port I/O
 4.1.4 Delaying with assembler instructions
 4.1.5 (TT
 4.2 Measuring time

 5. Other programming languages

 6. Some useful ports

 6.1 The parallel port
 6.2 The game (joystick) port
 6.3 The serial port

 7. Hints

 8. Troubleshooting

 9. Example code

 10. Credits

 __

 1. Introduction

 This HOWTO document describes programming hardware I/O ports and
 waiting for small periods of time in user-mode Linux programs running
 on the Intel x86 architecture. This document is a descendant of the
 very small IO-Port mini-HOWTO by the same author.

 This document is Copyright 1995-2000 Riku Saikkonen. See the Linux
 HOWTO copyright
 <http://sunsite.unc.edu/pub/Linux/docs/HOWTO/COPYRIGHT> for details.

 If you have corrections or something to add, feel free to e-mail me
 (Riku.Saikkonen@hut.fi)...

 2. Using I/O ports in C programs

 2.1. The normal method

 Routines for accessing I/O ports are in /usr/include/asm/io.h (or

 linux/include/asm-i386/io.h in the kernel source distribution). The
 routines there are inline macros, so it is enough to #include
 <asm/io.h>; you do not need any additional libraries.

 Because of a limitation in gcc (present in all versions I know of,
 including egcs), you have to compile any source code that uses these
 routines with optimisation turned on (gcc -O1 or higher), or
 alternatively use #define extern static before you #include <asm/io.h>
 (remember to #undef externafterwards).

 For debugging, you can use gcc -g -O (at least with modern versions of
 gcc), though optimisation can sometimes make the debugger behave a bit
 strangely. If this bothers you, put the routines that use I/O port
 access in a separate source file and compile only that with
 optimisation turned on.

 2.1.1. Permissions

 Before you access any ports, you must give your program permission to
 do so. This is done by calling the ioperm() function (declared in
 unistd.h, and defined in the kernel) somewhere near the start of your
 program (before any I/O port accesses). The syntax is ioperm(from,
 num, turn_on), where from is the first port number to give access to,
 and num the number of consecutive ports to give access to. For
 example, ioperm(0x300, 5, 1) would give access to ports 0x300 through
 0x304 (a total of 5 ports). The last argument is a Boolean value
 specifying whether to give access to the program to the ports (true
 (1)) or to remove access (false (0)). You can call ioperm() multiple
 times to enable multiple non-consecutive ports. See the ioperm(2)
 manual page for details on the syntax.

 The ioperm() call requires your program to have root privileges; thus
 you need to either run it as the root user, or make it setuid root.
 You can drop the root privileges after you have called ioperm() to
 enable the ports you want to use. You are not required to explicitly
 drop your port access privileges with ioperm(..., 0) at the end of
 your program; this is done automatically as the process exits.

 A setuid() to a non-root user does not disable the port access granted
 by ioperm(), but a fork() does (the child process does not get access,
 but the parent retains it).

 ioperm() can only give access to ports 0x000 through 0x3ff; for higher
 ports, you need to use iopl() (which gives you access to all ports at
 once). Use the level argument 3 (i.e., iopl(3)) to give your program
 access to all I/O ports (so be careful --- accessing the wrong ports
 can do all sorts of nasty things to your computer). Again, you need
 root privileges to call iopl(). See the iopl(2) manual page for
 details.

 2.1.2. Accessing the ports

 To input a byte (8 bits) from a port, call inb(port), it returns the
 byte it got. To output a byte, call outb(value, port) (please note the
 order of the parameters). To input a word (16 bits) from ports x and
 x+1 (one byte from each to form the word, using the assembler
 instruction inw), call inw(x). To output a word to the two ports, use
 outw(value, x). If you're unsure of which port instructions (byte or
 word) to use, you probably want inb() and outb() --- most devices are
 designed for bytewise port access. Note that all port access

 instructions take at least about a microsecond to execute.

 The inb_p(), outb_p(), inw_p(), and outw_p() macros work otherwise
 identically to the ones above, but they do an additional short (about
 one microsecond) delay after the port access; you can make the delay
 about four microseconds with #define REALLY_SLOW_IO before you
 #include <asm/io.h>. These macros normally (unless you #define
 SLOW_IO_BY_JUMPING, which is probably less accurate) use a port output
 to port 0x80 for their delay, so you need to give access to port 0x80
 with ioperm() first (outputs to port 0x80 should not affect any part
 of the system). For more versatile methods of delaying, read on.

 There are manual pages for ioperm(2), iopl(2), and the above macros in
 reasonably recent releases of the Linux manual page collection.

 2.2. An alternate method: /dev/port

 Another way to access I/O ports is to open() /dev/port (a character
 device, major number 1, minor 4) for reading and/or writing (the stdio
 f*() functions have internal buffering, so avoid them). Then lseek()
 to the appropriate byte in the file (file position 0 = port 0x00, file
 position 1 = port 0x01, and so on), and read() or write() a byte or
 word from or to it.

 Naturally, for this to work your program needs read/write access to
 /dev/port. This method is probably slower than the normal method
 above, but does not need compiler optimisation nor ioperm(). It
 doesn't need root access either, if you give a non-root user or group
 access to /dev/port --- but this is a very bad thing to do in terms of
 system security, since it is possible to hurt the system, perhaps even
 gain root access, by using /dev/port to access hard disks, network
 cards, etc. directly.

 You cannot use select(2) or poll(2) to read /dev/port, because the
 hardware does not have a facility for notifying the CPU when a value
 in an input port changes.

 3. Interrupts (IRQs) and DMA access

 You cannot use IRQs or DMA directly from a user-mode process. You need
 to write a kernel driver; see The Linux Kernel Hacker's Guide
 <http://www.redhat.com:8080/HyperNews/get/khg.html> for details and
 the kernel source code for examples.

 You can disable interrupts from within a user-mode program, though it
 can be dangerous (even kernel drivers do it for as short a time as
 possible). After calling iopl(3), you can disable interrupts simply
 by calling asm("cli");, and re-enable them with asm("sti");.

 4. High-resolution timing

 4.1. Delays

 First of all, I should say that you cannot guarantee user-mode
 processes to have exact control of timing because of the multi-tasking
 nature of Linux. Your process might be scheduled out at any time for
 anything from about 10 milliseconds to a few seconds (on a system with

 very high load). However, for most applications using I/O ports, this
 does not really matter. To minimise this, you may want to nice your
 process to a high-priority value (see the nice(2) manual page) or use
 real-time scheduling (see below).

 If you want more precise timing than normal user-mode processes give
 you, there are some provisions for user-mode `real time' support.
 Linux 2.x kernels have soft real time support; see the manual page for
 sched_setscheduler(2) for details. There is a special kernel that
 supports hard real time; see <http://luz.cs.nmt.edu/~rtlinux/> for
 more information on this.

 4.1.1. Sleeping: sleep() and usleep()

 Now, let me start with the easier timing calls. For delays of multiple
 seconds, your best bet is probably to use sleep(). For delays of at
 least tens of milliseconds (about 10 ms seems to be the minimum
 delay), usleep() should work. These functions give the CPU to other
 processes (``sleep''), so CPU time isn't wasted. See the manual pages
 sleep(3) and usleep(3) for details.

 For delays of under about 50 milliseconds (depending on the speed of
 your processor and machine, and the system load), giving up the CPU
 takes too much time, because the Linux scheduler (for the x86
 architecture) usually takes at least about 10-30 milliseconds before
 it returns control to your process. Due to this, in small delays,
 usleep(3) usually delays somewhat more than the amount that you
 specify in the parameters, and at least about 10 ms.

 4.1.2. nanosleep()

 In the 2.0.x series of Linux kernels, there is a new system call,
 nanosleep() (see the nanosleep(2) manual page), that allows you to
 sleep or delay for short times (a few microseconds or more).

 For delays <= 2 ms, if (and only if) your process is set to soft real
 time scheduling (using sched_setscheduler()), nanosleep() uses a busy
 loop; otherwise it sleeps, just like usleep().

 The busy loop uses udelay() (an internal kernel function used by many
 kernel drivers), and the length of the loop is calculated using the
 BogoMips value (the speed of this kind of busy loop is one of the
 things that BogoMips measures accurately). See
 /usr/include/asm/delay.h) for details on how it works.

 4.1.3. Delaying with port I/O

 Another way of delaying small numbers of microseconds is port I/O.
 Inputting or outputting any byte from/to port 0x80 (see above for how
 to do it) should wait for almost exactly 1 microsecond independent of
 your processor type and speed. You can do this multiple times to wait
 a few microseconds. The port output should have no harmful side
 effects on any standard machine (and some kernel drivers use it). This
 is how {in|out}[bw]_p() normally do the delay (see asm/io.h).

 Actually, a port I/O instruction on most ports in the 0-0x3ff range
 takes almost exactly 1 microsecond, so if you're, for example, using
 the parallel port directly, just do additional inb()s from that port
 to delay.

 4.1.4. Delaying with assembler instructions

 If you know the processor type and clock speed of the machine the
 program will be running on, you can hard-code shorter delays by
 running certain assembler instructions (but remember, your process
 might be scheduled out at any time, so the delays might well be longer
 every now and then). For the table below, the internal processor speed
 determines the number of clock cycles taken; e.g., for a 50 MHz
 processor (e.g. 486DX-50 or 486DX2-50), one clock cycle takes
 1/50000000 seconds (=200 nanoseconds).

 Instruction i386 clock cycles i486 clock cycles
 xchg %bx,%bx 3 3
 nop 3 1
 or %ax,%ax 2 1
 mov %ax,%ax 2 1
 add %ax,0 2 1

 Clock cycles for Pentiums should be the same as for i486, except that
 on Pentium Pro/II, add %ax, 0 may take only 1/2 clock cycles. It can
 sometimes be paired with another instruction (because of out-of-order
 execution, this need not even be the very next instruction in the
 instruction stream).

 The instructions nop and xchg in the table should have no side
 effects. The rest may modify the flags register, but this shouldn't
 matter since gcc should detect it. xchg %bx, %bx is a safe choice for
 a delay instruction.

 To use these, call asm("instruction") in your program. The syntax of
 the instructions is as in the table above; if you want multiple
 instructions in a single asm() statement, separate them with
 semicolons. For example, asm("nop ; nop ; nop ; nop") executes four
 nop instructions, delaying for four clock cycles on i486 or Pentium
 processors (or 12 clock cycles on an i386).

 asm() is translated into inline assembler code by gcc, so there is no
 function call overhead.

 Shorter delays than one clock cycle are impossible in the Intel x86
 architecture.

 4.1.5. rdtsc for Pentiums

 For Pentiums, you can get the number of clock cycles elapsed since the
 last reboot with the following C code (which executes the CPU
 instrution named RDTSC):

 __
 extern __inline__ unsigned long long int rdtsc()
 {
 unsigned long long int x;
 __asm__ volatile (".byte 0x0f, 0x31" : "=A" (x));
 return x;

 }
 __

 You can poll this value in a busy loop to delay for as many clock
 cycles as you want.

 4.2. Measuring time

 For times accurate to one second, it is probably easiest to use
 time(). For more accurate times, gettimeofday() is accurate to about a
 microsecond (but see above about scheduling). For Pentiums, the rdtsc
 code fragment above is accurate to one clock cycle.

 If you want your process to get a signal after some amount of time,
 use setitimer() or alarm(). See the manual pages of the functions for
 details.

 5. Other programming languages

 The description above concentrates on the C programming language. It
 should apply directly to C++ and Objective C. In assembler, you have
 to call ioperm() or iopl() as in C, but after that you can use the I/O
 port read/write instructions directly.

 In other languages, unless you can insert inline assembler or C code
 into the program or use the system calls mentioned above, it is
 probably easiest to write a simple C source file with functions for
 the I/O port accesses or delays that you need, and compile and link it
 in with the rest of your program. Or use /dev/port as described above.

 6. Some useful ports

 Here is some programming information for common ports that can be
 directly used for general-purpose TTL (or CMOS) logic I/O.

 If you want to use these or other common ports for their intended
 purpose (e.g., to control a normal printer or modem), you should most
 likely use existing drivers (which are usually included in the kernel)
 instead of programming the ports directly as this HOWTO describes.
 This section is intended for those people who want to connect LCD
 displays, stepper motors, or other custom electronics to a PC's
 standard ports.

 If you want to control a mass-market device like a scanner (that has
 been on the market for a while), look for an existing Linux driver for
 it. The Hardware-HOWTO
 <http://sunsite.unc.edu/pub/Linux/docs/HOWTO/Hardware-HOWTO> is a good
 place to start.

 <http://www.hut.fi/Misc/Electronics/> is a good source for more
 information on connecting devices to computers (and on electronics in
 general).

 6.1. The parallel port

 The parallel port's base address (called ``BASE'' below) is 0x3bc for
 /dev/lp0, 0x378 for /dev/lp1, and 0x278 for /dev/lp2. If you only want
 to control something that acts like a normal printer, see the
 Printing-HOWTO <http://sunsite.unc.edu/pub/Linux/docs/HOWTO/Printing-
 HOWTO>.

 In addition to the standard output-only mode described below, there is
 an `extended' bidirectional mode in most parallel ports. For
 information on this and the newer ECP/EPP modes (and the IEEE 1284
 standard in general), see <http://www.fapo.com/> and
 <http://www.senet.com.au/~cpeacock/parallel.htm>. Remember that since
 you cannot use IRQs or DMA in a user-mode program, you will probably
 have to write a kernel driver to use ECP/EPP; I think someone is
 writing such a driver, but I don't know the details.

 The port BASE+0 (Data port) controls the data signals of the port (D0
 to D7 for bits 0 to 7, respectively; states: 0 = low (0 V), 1 = high
 (5 V)). A write to this port latches the data on the pins. A read
 returns the data last written in standard or extended write mode, or
 the data in the pins from another device in extended read mode.

 The port BASE+1 (Status port) is read-only, and returns the state of
 the following input signals:

 · Bits 0 and 1 are reserved.

 · Bit 2 IRQ status (not a pin, I don't know how this works)

 · Bit 3 ERROR (1=high)

 · Bit 4 SLCT (1=high)

 · Bit 5 PE (1=high)

 · Bit 6 ACK (1=high)

 · Bit 7 -BUSY (0=high)

 The port BASE+2 (Control port) is write-only (a read returns the data
 last written), and controls the following status signals:

 · Bit 0 -STROBE (0=high)

 · Bit 1 -AUTO_FD_XT (0=high)

 · Bit 2 INIT (1=high)

 · Bit 3 -SLCT_IN (0=high)

 · Bit 4 enables the parallel port IRQ (which occurs on the low-to-
 high transition of ACK) when set to 1.

 · Bit 5 controls the extended mode direction (0 = write, 1 = read),
 and is completely write-only (a read returns nothing useful for
 this bit).

 · Bits 6 and 7 are reserved.

 Pinout (a 25-pin female D-shell connector on the port) (i=input,
 o=output):

 1io -STROBE, 2io D0, 3io D1, 4io D2, 5io D3, 6io D4, 7io D5, 8io D6,

 9io D7, 10i ACK, 11i -BUSY, 12i PE, 13i SLCT, 14o -AUTO_FD_XT,
 15i ERROR, 16o INIT, 17o -SLCT_IN, 18-25 Ground

 The IBM specifications say that pins 1, 14, 16, and 17 (the control
 outputs) have open collector drivers pulled to 5 V through 4.7 kiloohm
 resistors (sink 20 mA, source 0.55 mA, high-level output 5.0 V minus
 pullup). The rest of the pins sink 24 mA, source 15 mA, and their
 high-level output is min. 2.4 V. The low state for both is max. 0.5 V.
 Non-IBM parallel ports probably deviate from this standard. For more
 information on this, see
 <http://www.hut.fi/Misc/Electronics/circuits/lptpower.html>.

 Finally, a warning: Be careful with grounding. I've broken several
 parallel ports by connecting to them while the computer is turned on.
 It might be a good thing to use a parallel port not integrated on the
 motherboard for things like this. (You can usually get a second
 parallel port for your machine with a cheap standard `multi-I/O' card;
 just disable the ports that you don't need, and set the parallel port
 I/O address on the card to a free address. You don't need to care
 about the parallel port IRQ if you don't use it.)

 6.2. The game (joystick) port

 The game port is located at port addresses 0x200-0x207. If you want to
 control normal joysticks, you're probably better off using the drivers
 distributed with the Linux kernel.

 Pinout (a 15-pin female D-shell connector on the port):

 · 1,8,9,15: +5 V (power)

 · 4,5,12: Ground

 · 2,7,10,14: Digital inputs BA1, BA2, BB1, and BB2, respectively

 · 3,6,11,13: ``Analog'' inputs AX, AY, BX, and BY, respectively

 The +5 V pins seem to often be connected directly to the power lines
 in the motherboard, so they may be able to source quite a lot of
 power, depending on the motherboard, power supply and game port.

 The digital inputs are used for the buttons of the two joysticks
 (joystick A and joystick B, with two buttons each) that you can
 connect to the port. They should be normal TTL-level inputs, and you
 can read their status directly from the status port (see below). A
 real joystick returns a low (0 V) status when the button is pressed
 and a high (the 5 V from the power pins through an 1 Kohm resistor)
 status otherwise.

 The so-called analog inputs actually measure resistance. The game port
 has a quad one-shot multivibrator (a 558 chip) connected to the four
 inputs. In each input, there is a 2.2 Kohm resistor between the input
 pin and the multivibrator output, and a 0.01 uF timing capacitor
 between the multivibrator output and the ground. A real joystick has a
 potentiometer for each axis (X and Y), wired between +5 V and the
 appropriate input pin (AX or AY for joystick A, or BX or BY for
 joystick B).

 The multivibrator, when activated, sets its output lines high (5 V)

 and waits for each timing capacitor to reach 3.3 V before lowering the
 respective output line. Thus the high period duration of the
 multivibrator is proportional to the resistance of the potentiometer
 in the joystick (i.e., the position of the joystick in the appropriate
 axis), as follows:

 R = (t - 24.2) / 0.011,

 where R is the resistance (ohms) of the potentiometer and t the high
 period duration (microseconds).
 Thus, to read the analog inputs, you first activate the multivibrator
 (with a port write; see below), then poll the state of the four axes
 (with repeated port reads) until they drop from high to low state,
 measuring their high period duration. This polling uses quite a lot of
 CPU time, and on a non-realtime multitasking system like (normal user-
 mode) Linux, the result is not very accurate because you cannot poll
 the port constantly (unless you use a kernel-level driver and disable
 interrupts while polling, but this wastes even more CPU time). If you
 know that the signal is going to take a long time (tens of ms) to go
 down, you can call usleep() before polling to give CPU time to other
 processes.

 The only I/O port you need to access is port 0x201 (the other ports
 either behave identically or do nothing). Any write to this port (it
 doesn't matter what you write) activates the multivibrator. A read
 from this port returns the state of the input signals:

 · Bit 0: AX (status (1=high) of the multivibrator output)

 · Bit 1: AY (status (1=high) of the multivibrator output)

 · Bit 2: BX (status (1=high) of the multivibrator output)

 · Bit 3: BY (status (1=high) of the multivibrator output)

 · Bit 4: BA1 (digital input, 1=high)

 · Bit 5: BA2 (digital input, 1=high)

 · Bit 6: BB1 (digital input, 1=high)

 · Bit 7: BB2 (digital input, 1=high)

 6.3. The serial port

 If the device you're talking to supports something resembling RS-232,
 you should be able to use the serial port to talk to it. The Linux
 serial driver should be enough for almost all applications (you
 shouldn't have to program the serial port directly, and you'd probably
 have to write a kernel driver to do it); it is quite versatile, so
 using non-standard bps rates and so on shouldn't be a problem.

 See the termios(3) manual page, the serial driver source code
 (linux/drivers/char/serial.c), and
 <http://www.easysw.com/~mike/serial/> for more information on
 programming serial ports on Unix systems.

 7. Hints

 If you want good analog I/O, you can wire up ADC and/or DAC chips to
 the parallel port (hint: for power, use the game port connector or a
 spare disk drive power connector wired to outside the computer case,
 unless you have a low-power device and can use the parallel port
 itself for power, or use an external power supply), or buy an AD/DA
 card (most of the older/slower ones are controlled by I/O ports). Or,
 if you're satisfied with 1 or 2 channels, inaccuracy, and (probably)
 bad zeroing, a cheap sound card supported by the Linux sound driver
 should do (and it's quite fast).

 With accurate analog devices, improper grounding may generate errors
 in the analog inputs or outputs. If you experience something like
 this, you could try electrically isolating your device from the
 computer with optocouplers (on all signals between the computer and
 your device). Try to get power for the optocouplers from the computer
 (spare signals on the port may give enough power) to achieve better
 isolation.

 If you're looking for printed circuit board design software for Linux,
 there is a free X11 application called Pcb that should do a nice job,
 at least if you aren't doing anything very complex. It is included in
 many Linux distributions, and available in
 <ftp://sunsite.unc.edu/pub/Linux/apps/circuits/> (filename pcb-*).

 8. Troubleshooting

 Q1.
 I get segmentation faults when accessing ports.

 A1.
 Either your program does not have root privileges, or the
 ioperm() call failed for some other reason. Check the return
 value of ioperm(). Also, check that you're actually accessing
 the ports that you enabled with ioperm() (see Q3). If you're
 using the delaying macros (inb_p(), outb_p(), and so on),
 remember to call ioperm() to get access to port 0x80 too.

 Q2.
 I can't find the in*(), out*() functions defined anywhere, and
 gcc complains about undefined references.

 A2.
 You did not compile with optimisation turned on (-O), and thus
 gcc could not resolve the macros in asm/io.h. Or you did not
 #include <asm/io.h> at all.

 Q3.
 out*() doesn't do anything, or does something weird.

 A3.
 Check the order of the parameters; it should be outb(value,
 port), not outportb(port, value) as is common in MS-DOS.

 Q4.
 I want to control a standard RS-232 device/parallel
 printer/joystick...

 A4.
 You're probably better off using existing drivers (in the Linux
 kernel or an X server or somewhere else) to do it. The drivers
 are usually quite versatile, so even slightly non-standard
 devices usually work with them. See the information on standard
 ports above for pointers to documentation for them.

 9. Example code

 Here's a piece of simple example code for I/O port access:

 __
 /*
 * example.c: very simple example of port I/O
 *
 * This code does nothing useful, just a port write, a pause,
 * and a port read. Compile with `gcc -O2 -o example example.c',
 * and run as root with `./example'.
 */

 #include <stdio.h>
 #include <unistd.h>
 #include <asm/io.h>

 #define BASEPORT 0x378 /* lp1 */

 int main()
 {
 /* Get access to the ports */
 if (ioperm(BASEPORT, 3, 1)) {perror("ioperm"); exit(1);}

 /* Set the data signals (D0-7) of the port to all low (0) */
 outb(0, BASEPORT);

 /* Sleep for a while (100 ms) */
 usleep(100000);

 /* Read from the status port (BASE+1) and display the result */
 printf("status: %d\n", inb(BASEPORT + 1));

 /* We don't need the ports anymore */
 if (ioperm(BASEPORT, 3, 0)) {perror("ioperm"); exit(1);}

 exit(0);
 }

 /* end of example.c */
 __

 10. Credits

 Too many people have contributed for me to list, but thanks a lot,
 everyone. I have not replied to all the contributions that I've
 received; sorry for that, and thanks again for the help.

