Table of Contents

1. Introduction
2. Using I/O ports in C prograns

2.1 The nornal nethod

2.1.1 Perm ssions

2.1.2 Accessing the ports
2.2 An alternate nethod:

3. Interrupts (1 RQ) and DVA access
4. High-resolution timng

4.1 Del ays

1.1 Sl eeping:

1.2 (TT

1.3 Delaying with port 1/0

1.4 Delaying with assenbler instructions
1.5 (TT

4.2 Measuring tine

e s

5. Ot her progranm ng | anguages
6. Some useful ports
6.1 The parallel port
6.2 The gane (joystick) port
6.3 The serial port
7. Hints
8. Troubl eshooti ng
9. Exanpl e code

10. Credits

1. Introduction

Thi s HOMO docunent descri bes progranm ng hardware 1/ O ports and

wai ting for small periods of time in user-node Linux progranms running
on the Intel x86 architecture. This docunment is a descendant of the
very small 1O Port mini-HOMO by the sanme aut hor

Thi s docunent is Copyright 1995-2000 Ri ku Sai kkonen. See the Li nux
HOMO copyri ght
<http://sunsite.unc. edu/ pub/Li nux/ docs/ HOMQ COPYRI GHT> for details.

If you have corrections or sonething to add, feel free to e-mail ne
(Ri ku. Sai kkonen@uwut . fi). ..

2. Using 1/0 ports in C programs
2.1. The normal method

Routines for accessing I/O ports are in /usr/include/asnfio.h (or

i nux/include/asmi386/io.h in the kernel source distribution). The
routines there are inline nmacros, so it is enough to #include
<asm i 0. h> you do not need any additional libraries.

Because of a limtation in gcc (present in all versions | know of,

i ncl udi ng egcs), you have to conpile any source code that uses these
routines with optimisation turned on (gcc -OL or higher), or
alternatively use #define extern static before you #include <asnifio. h>
(renmenber to #undef externafterwards).

For debuggi ng, you can use gcc -g -O (at |least with nodern versions of
gce), though optimsation can soneti nes make the debugger behave a bit
strangely. If this bothers you, put the routines that use I/O port
access in a separate source file and conpile only that with

optim sation turned on

2.1.1. Permissions

Bef ore you access any ports, you nust give your program perm ssion to
do so. This is done by calling the ioperm() function (declared in

uni std. h, and defined in the kernel) sonewhere near the start of your
program (before any I/ O port accesses). The syntax is ioperm(from
num turn_on), where fromis the first port nunber to give access to,
and num the nunber of consecutive ports to give access to. For
exanpl e, ioperm0x300, 5, 1) would give access to ports 0x300 through
0x304 (a total of 5 ports). The last argunent is a Bool ean val ue
speci fying whether to give access to the programto the ports (true
(1)) or to renopve access (false (0)). You can call ioperm() multiple
tinmes to enable multiple non-consecutive ports. See the iopern{2)
manual page for details on the syntax.

The iopern() call requires your programto have root privileges; thus
you need to either run it as the root user, or nake it setuid root.
You can drop the root privileges after you have called ioperm) to
enabl e the ports you want to use. You are not required to explicitly
drop your port access privileges with iopernm(..., 0) at the end of
your program this is done automatically as the process exits.

A setuid() to a non-root user does not disable the port access granted
by ioperm(), but a fork() does (the child process does not get access,
but the parent retains it).

i opern() can only give access to ports 0x000 through O0x3ff; for higher
ports, you need to use iopl() (which gives you access to all ports at

once). Use the level argunment 3 (i.e., iopl(3)) to give your program
access to all /O ports (so be careful --- accessing the wong ports
can do all sorts of nasty things to your conputer). Again, you need
root privileges to call iopl(). See the iopl(2) nmanual page for
details.

2.1.2. Accessing the ports

To input a byte (8 bits) froma port, call inb(port), it returns the
byte it got. To output a byte, call outb(value, port) (please note the
order of the paraneters). To input a word (16 bits) fromports x and
x+1 (one byte fromeach to formthe word, using the assenbl er

instruction inw), call inw(x). To output a word to the two ports, use
outw(value, x). If you're unsure of which port instructions (byte or
word) to use, you probably want inb() and outb() --- npbst devices are

designed for bytewi se port access. Note that all port access

instructions take at | east about a mcrosecond to execute.

The inb_p(), outb _p(), inw p(), and outw p() nacros work otherw se
identically to the ones above, but they do an additional short (about
one m crosecond) delay after the port access; you can nake the del ay
about four mcroseconds with #define REALLY SLOWI O before you

#i nclude <asmio. h> These nmacros nornally (unless you #define

SLOW 1 O BY JUMPI NG which is probably | ess accurate) use a port out put
to port 0Ox80 for their delay, so you need to give access to port 0x80
with ioperm() first (outputs to port O0x80 should not affect any part
of the systenm). For nore versatile nethods of delaying, read on

There are manual pages for iopern(2), iopl(2), and the above nacros in
reasonably recent releases of the Linux nanual page collection

2.2. An alternate method: /dev/port

Anot her way to access |I/O ports is to open() /dev/port (a character
device, major nunmber 1, minor 4) for reading and/or witing (the stdio
f*() functions have internal buffering, so avoid them. Then | seek()
to the appropriate byte in the file (file position 0 = port 0x00, file
position 1 = port 0x01, and so on), and read() or wite() a byte or
word fromor to it.

Naturally, for this to work your program needs read/wite access to
/dev/port. This nethod is probably slower than the normal nethod
above, but does not need conpiler optimsation nor ioperm(). It
doesn't need root access either, if you give a non-root user or group
access to /dev/port --- but this is a very bad thing to do in terns of
system security, since it is possible to hurt the system perhaps even
gai n root access, by using /dev/port to access hard di sks, network
cards, etc. directly.

You cannot use select(2) or poll(2) to read /dev/port, because the
hardware does not have a facility for notifying the CPU when a val ue
in an input port changes.

3. Interrupts (IRQs) and DMA access

You cannot use IRQ@ or DVA directly froma user-node process. You need
to wite a kernel driver; see The Linux Kernel Hacker's Quide

<htt p://ww. redhat . com 8080/ Hyper News/ get/ khg. ht M > for details and

t he kernel source code for exanples.

You can disable interrupts fromw thin a user-node program though it
can be dangerous (even kernel drivers do it for as short a tine as
possible). After calling iopl(3), you can disable interrupts sinply
by calling asn("cli");, and re-enable themwith asm("sti");

4_. High-resolution timing
4.1. Delays

First of all, | should say that you cannot guarantee user-node
processes to have exact control of timng because of the nulti-tasking
nature of Linux. Your process mght be scheduled out at any tine for
anything fromabout 10 nmilliseconds to a few seconds (on a systemwith

very high load). However, for nost applications using I/O ports, this
does not really matter. To mininmise this, you nay want to nice your
process to a high-priority value (see the nice(2) nmanual page) or use
real -tine scheduling (see bel ow).

If you want nore precise timng than normal user-node processes give
you, there are sone provisions for user-node "real tine' support.

Li nux 2.x kernels have soft real time support; see the nmanual page for
sched_setschedul er(2) for details. There is a special kernel that
supports hard real time; see <http://luz.cs.nnt.edu/~rtlinux/> for
nore information on this.

4.1.1. Sleeping: sleep() and usleep()

Now, let me start with the easier tinmng calls. For delays of multiple
seconds, your best bet is probably to use sleep(). For delays of at

| east tens of milliseconds (about 10 ns seens to be the mni num

del ay), usleep() should work. These functions give the CPU to other
processes (" "sleep''), so CPUtine isn't wasted. See the manual pages
sl eep(3) and usleep(3) for details.

For del ays of under about 50 milliseconds (depending on the speed of
your processor and machi ne, and the systemload), giving up the CPU
takes too nuch tine, because the Linux scheduler (for the x86
architecture) usually takes at |east about 10-30 nilliseconds before
it returns control to your process. Due to this, in small del ays,

usl eep(3) usually del ays sonewhat nore than the anmount that you
specify in the paraneters, and at |east about 10 nms.

4.1.2. nanosleep()

In the 2.0.x series of Linux kernels, there is a new system call
nanosl eep() (see the nanosl eep(2) nanual page), that allows you to
sl eep or delay for short tines (a few nicroseconds or nore).

For delays <= 2 nms, if (and only if) your process is set to soft rea
ti me scheduling (using sched setschedul er()), nanosleep() uses a busy
| oop; otherwise it sleeps, just like usleep().

The busy | oop uses udelay() (an internal kernel function used by many
kernel drivers), and the length of the I oop is calcul ated using the
BogoM ps val ue (the speed of this kind of busy loop is one of the

t hi ngs that BogoM ps neasures accurately). See

/fusr/include/asm delay.h) for details on how it works.

4.1.3. Delaying with port 1/0

Anot her way of del aying small nunbers of mcroseconds is port 1/0Q
Inputting or outputting any byte fromto port 0x80 (see above for how
to do it) should wait for al nost exactly 1 mcrosecond i ndependent of
your processor type and speed. You can do this nultiple tinmes to wait
a few m croseconds. The port output should have no harnful side

ef fects on any standard machi ne (and sonme kernel drivers use it). This
is how {injout}[bw] _p() norrmally do the delay (see asmio.h).

Actually, a port I/Oinstruction on nost ports in the 0-0x3ff range
takes al nost exactly 1 mcrosecond, so if you're, for exanple, using
the parallel port directly, just do additional inb()s fromthat port
to del ay.

4.1.4_. Delaying with assembler instructions

If you know the processor type and cl ock speed of the machine the
programw || be running on, you can hard-code shorter delays by
runni ng certain assenbler instructions (but renenber, your process

m ght be schedul ed out at any tinme, so the delays might well be |onger
every now and then). For the table below, the internal processor speed
det erm nes the nunber of clock cycles taken; e.g., for a 50 Mz
processor (e.g. 486DX-50 or 486DX2-50), one clock cycle takes

1/ 50000000 seconds (=200 nanoseconds).

I nstruction i 386 cl ock cycles i 486 cl ock cycles
xchg %bx, Ybx 3 3
nop 3 1
or %ax, Yax 2 1
mov %ax, Yax 2 1
add %ax, 0 2 1

C ock cycles for Pentiuns should be the sane as for i486, except that
on PentiumPro/ll, add %ax, O nay take only 1/2 clock cycles. It can
sometines be paired with another instruction (because of out-of-order
execution, this need not even be the very next instruction in the

i nstruction streanm.

The instructions nop and xchg in the table should have no side
effects. The rest may nodify the flags register, but this shoul dn't
matter since gcc should detect it. xchg %x, %x is a safe choice for
a delay instruction.

To use these, call asn("instruction") in your program The syntax of
the instructions is as in the table above; if you want nmultiple
instructions in a single asm) statenent, separate themwith

sem col ons. For exanple, asn{"nop ; nop ; nop ; nop") executes four
nop instructions, delaying for four clock cycles on i486 or Pentium
processors (or 12 clock cycles on an i 386).

asn() is translated into inline assenbler code by gcc, so there is no
function call overhead.

Shorter delays than one clock cycle are inpossible in the Intel x86
architecture.

4.1.5. rdtsc for Pentiums

For Pentiuns, you can get the nunber of clock cycles el apsed since the

| ast reboot with the following C code (which executes the CPU
i nstrution naned RDTSC):

extern __inline__ unsigned long long int rdtsc()

{
unsigned long long int x;
__asm__ volatile (".byte OxOf, 0Ox31" : "=A" (x));
return Xx;

You can poll this value in a busy |loop to delay for as many cl ock
cycl es as you want.

4_.2. Measuring time

For times accurate to one second, it is probably easiest to use
time(). For nmore accurate tinmes, gettineofday() is accurate to about a
m crosecond (but see above about scheduling). For Pentiunms, the rdtsc
code fragnment above is accurate to one clock cycle.

If you want your process to get a signal after some anmount of tine,
use setitiner() or alarn(). See the nanual pages of the functions for
detail s.

5. Other programming languages

The description above concentrates on the C progranm ng | anguage. It
shoul d apply directly to C++ and bjective C. In assenbler, you have
to call ioperm() or iopl() as in C, but after that you can use the 1/0
port read/wite instructions directly.

I n other I anguages, unless you can insert inline assenbler or C code
into the programor use the systemcalls nmentioned above, it is
probably easiest to wite a sinple C source file with functions for
the 1/0 port accesses or delays that you need, and conpile and link it
inwith the rest of your program O use /dev/port as described above.

6. Some useful ports

Here is sonme programming information for comobn ports that can be
directly used for general -purpose TTL (or CMXS) logic I/0O

If you want to use these or other common ports for their intended
purpose (e.g., to control a normal printer or nodem), you should nost
likely use existing drivers (which are usually included in the kernel)
i nstead of progranmming the ports directly as this HOMO descri bes.
This section is intended for those people who want to connect LCD

di spl ays, stepper notors, or other customelectronics to a PC s
standard ports.

If you want to control a mass-market device |like a scanner (that has
been on the narket for a while), |Iook for an existing Linux driver for
it. The Hardware- HOMO

<htt p://sunsite.unc. edu/ pub/Li nux/ docs/ HOMQ Har dwar e- HOMO> i s a good
pl ace to start.

<http://ww. hut.fi/Msc/Electronics/> is a good source for nore

i nformati on on connecting devices to conputers (and on electronics in
general).

6.1. The parallel port

The parallel port's base address (called "~ "BASE ' below) is 0x3bc for
[dev/I p0, 0x378 for /dev/Ipl, and 0x278 for /dev/Ip2. If you only want
to control something that acts like a normal printer, see the
Printing-HOMO <http://sunsite.unc.edu/ pub/Linux/docs/ HOMQ Printi ng-
HOWTO>.

In addition to the standard out put-only node described below, there is
an “extended' bidirectional node in nost parallel ports. For
information on this and the newer ECP/EPP nodes (and the | EEE 1284
standard in general), see <http://ww.fapo.conl> and

<http://ww. senet.com au/ ~cpeacock/ paral |l el . ht n>. Renenber that since
you cannot use |R@ or DVA in a user-node program you w |l probably
have to wite a kernel driver to use ECP/EPP; | think soneone is
witing such a driver, but | don't know the details.

The port BASE+0 (Data port) controls the data signals of the port (DO
to D7 for bits O to 7, respectively; states: 0 =low (0 V), 1 = high
(5V)). Awite to this port latches the data on the pins. A read
returns the data last witten in standard or extended wite node, or
the data in the pins from another device in extended read node.

The port BASE+1 (Status port) is read-only, and returns the state of
the follow ng input signals:

Bits 0 and 1 are reserved.

Bit 2 IRQ status (not a pin, | don't know how this works)
Bit 3 ERROR (1=high)

Bit 4 SLCT (1=high)

Bit 5 PE (1=high)

Bit 6 ACK (1=high)

Bit 7 -BUSY (0=high)

The port BASE+2 (Control port) is wite-only (a read returns the data
last witten), and controls the follow ng status signals:

Bit O - STROBE (0=hi gh)

Bit 1 - AUTO FD_XT (0=hi gh)
Bit 2 INIT (1=hi gh)

Bit 3 -SLCT_IN (0=high)

Bit 4 enables the parallel port |IRQ (which occurs on the |owto-
high transition of ACK) when set to 1.

Bit 5 controls the extended node direction (0 = wite, 1 = read),
and is conpletely wite-only (a read returns nothing useful for
this bit).
Bits 6 and 7 are reserved.

Pinout (a 25-pin fermale D-shell connector on the port) (i=input,

o=out put) :

lio -STROBE, 2io DO, 3io D1, 4io D2, 5io0 D3, 6io D4, 7io D5, 8io D6,

9io D7, 10i ACK, 11i -BUSY, 12i PE, 13i SLCT, 140 -AUTO FD XT,
151 ERROR, 160 INIT, 170 -SLCT_IN, 18-25 G ound

The 1 BM specifications say that pins 1, 14, 16, and 17 (the contro

out puts) have open collector drivers pulled to 5 V through 4.7 kil oohm
resistors (sink 20 mA, source 0.55 mA, high-level output 5.0 V mnus
pul lup). The rest of the pins sink 24 mA, source 15 mA, and their

hi gh-1evel output is mn. 2.4 V. The |low state for both is nax. 0.5 V.
Non-1BM paral l el ports probably deviate fromthis standard. For nore
information on this, see

<http://ww. hut.fi/Msc/El ectronics/circuits/I| ptpower.htn >,

Finally, a warning: Be careful with grounding. |'ve broken severa
paral l el ports by connecting to themwhile the conmputer is turned on
It nmight be a good thing to use a parallel port not integrated on the
not herboard for things like this. (You can usually get a second
parallel port for your nmachine with a cheap standard “multi-1/O card;
just disable the ports that you don't need, and set the parallel port
I/O address on the card to a free address. You don't need to care
about the parallel port IRQif you don't use it.)

6.2. The game (Joystick) port

The gane port is located at port addresses 0x200-0x207. If you want to
control normal joysticks, you're probably better off using the drivers
distributed with the Linux kernel

Pinout (a 15-pin fermale D-shell connector on the port):
1,8,9,15: +5 V (power)
4,5,12: G ound
2,7,10,14: Digital inputs BAl, BA2, BBl, and BB2, respectively
3,6,11,13: " “Analog'' inputs AX, AY, BX and BY, respectively

The +5 V pins seemto often be connected directly to the power |ines
in the notherboard, so they may be able to source quite a | ot of
power, dependi ng on the notherboard, power supply and gane port.

The digital inputs are used for the buttons of the two joysticks
(joystick A and joystick B, with two buttons each) that you can
connect to the port. They should be normal TTL-Ievel inputs, and you
can read their status directly fromthe status port (see below). A
real joystick returns a low (0 V) status when the button is pressed
and a high (the 5 V fromthe power pins through an 1 Kohm resistor)
status ot herw se.

The so-called analog inputs actually neasure resistance. The gane port
has a quad one-shot nultivibrator (a 558 chip) connected to the four
inputs. In each input, there is a 2.2 Kohmresistor between the input
pin and the nultivibrator output, and a 0.01 uF tim ng capacitor
between the nultivibrator output and the ground. A real joystick has a
potentioneter for each axis (X and Y), wired between +5 V and the
appropriate input pin (AX or AY for joystick A or BX or BY for
joystick B).

The multivibrator, when activated, sets its output lines high (5 V)

and waits for each timng capacitor to reach 3.3 V before |lowering the
respective output line. Thus the high period duration of the

mul tivibrator is proportional to the resistance of the potentioneter
in the joystick (i.e., the position of the joystick in the appropriate
axis), as foll ows:

R=(t - 24.2) / 0.011,

where R is the resistance (ohns) of the potentioneter and t the high
peri od duration (mcroseconds).

Thus, to read the analog inputs, you first activate the nultivibrator
(with a port wite; see below), then poll the state of the four axes
(with repeated port reads) until they drop fromhigh to | ow state,
neasuring their high period duration. This polling uses quite a | ot of
CPU tine, and on a non-realtinme nmultitasking systemlike (normal user-
node) Linux, the result is not very accurate because you cannot pol
the port constantly (unless you use a kernel-level driver and di sable
interrupts while polling, but this wastes even nore CPU tine). If you
know that the signal is going to take a long tinme (tens of ns) to go
down, you can call usleep() before polling to give CPUtinme to other
processes.

The only 1/0O port you need to access is port 0x201 (the other ports
ei t her behave identically or do nothing). Any wite to this port (it
doesn't matter what you wite) activates the multivibrator. A read
fromthis port returns the state of the input signals:

Bit 0: AX (status (1=high) of the nultivibrator output)

Bit 1. AY (status (1=high) of the nultivibrator output)

Bit 2: BX (status (1=high) of the nultivibrator output)

Bit 3: BY (status (1=high) of the nultivibrator output)

Bit 4: BAl (digital input, 21=high)

Bit 5: BA2 (digital input, 21=high)

Bit 6: BBl (digital input, 1=high)

Bit 7: BB2 (digital input, 1=high)

6.3. The serial port

If the device you're talking to supports sonething resenbling RS-232,
you should be able to use the serial port to talk to it. The Linux
serial driver should be enough for alnobst all applications (you

shoul dn't have to programthe serial port directly, and you'd probably
have to wite a kernel driver to do it); it is quite versatile, so
usi ng non-standard bps rates and so on shouldn't be a problem

See the term os(3) manual page, the serial driver source code
(i nux/drivers/char/serial.c), and
<http://ww. easysw. com’ ~m ke/ serial/> for nore information on
progranmmi ng serial ports on Unix systens.

7. Hints

If you want good analog I1/Q you can wire up ADC and/or DAC chips to
the parallel port (hint: for power, use the gane port connector or a
spare di sk drive power connector wired to outside the conputer case
unl ess you have a | ow power device and can use the parallel port
itself for power, or use an external power supply), or buy an AD DA
card (nost of the ol der/slower ones are controlled by I/0O ports). O,
if youre satisfied with 1 or 2 channels, inaccuracy, and (probably)
bad zeroing, a cheap sound card supported by the Li nux sound driver
should do (and it's quite fast).

Wth accurate anal og devices, inproper grounding may generate errors
in the analog inputs or outputs. If you experience sonething |ike
this, you could try electrically isolating your device fromthe
conputer with optocouplers (on all signals between the conputer and
your device). Try to get power for the optocouplers fromthe conputer
(spare signals on the port may give enough power) to achi eve better

i sol ati on.

If you're looking for printed circuit board design software for Linux,
there is a free X11 application called Pcb that should do a nice job,
at least if you aren't doing anything very conplex. It is included in
many Linux distributions, and available in
<ftp://sunsite.unc. edu/ pub/Linux/apps/circuits/> (fil enanme pcb-*).

8. Troubleshooting

QL.

| get segnentation faults when accessing ports.

Ei t her your program does not have root privileges, or the
iopern() call failed for some other reason. Check the return
val ue of ioperm(). Also, check that you're actually accessing
the ports that you enabled with iopern() (see @). If you're
usi ng the del aying nmacros (inb_p(), outb _p(), and so on),
renmenmber to call ioperm() to get access to port 0x80 too.

| can't find the in*(), out*() functions defined anywhere, and
gcc conpl ai ns about undefined references.

You did not conpile with optimsation turned on (-0, and thus
gcc could not resolve the macros in asmio.h. O you did not
#include <asmio.h> at all

out*() doesn't do anything, or does sonething weird.

A3.
Check the order of the paraneters; it should be outb(val ue,
port), not outportb(port, value) as is comon in M5 DCS.

.
I want to control a standard RS-232 device/parallel
printer/joystick...

You' re probably better off using existing drivers (in the Linux
kernel or an X server or somewhere else) to do it. The drivers
are usually quite versatile, so even slightly non-standard
devices usually work with them See the information on standard
ports above for pointers to docunentation for them

9. Example code

Here's a piece of sinple exanple code for 1/0O port access:

/*
* exanpl e.c: very sinple exanple of port 1/0
*
* This code does nothing useful, just a port wite, a pause,
* and a port read. Conpile with “gcc -2 -0 exanple exanple.c',
* and run as root with ~./exanple'.
*/

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>
#i ncl ude <asniio. h>

#defi ne BASEPORT 0x378 /* |pl */
int main()
{
/* Get access to the ports */
if (ioperm BASEPORT, 3, 1)) {perror("ioperm'); exit(1l);}

/* Set the data signals (DO-7) of the port to all low (0) */
out b(0, BASEPORT);

/* Sleep for a while (100 ns) */
usl eep(100000);

/* Read fromthe status port (BASE+1l) and display the result */
printf("status: %\ n", inb(BASEPORT + 1))

/* W don't need the ports anynore */
if (ioperm BASEPORT, 3, 0)) {perror("ioperm'); exit(1l);}

exit(0);
}

/* end of exanple.c */

10. Credits

Too many peopl e have contributed for ne to list, but thanks a |ot,
everyone. | have not replied to all the contributions that |'ve
received; sorry for that, and thanks again for the help.

